
zz API

1

Introduction

BuWizz is a smart connected power brick device compatible with Lego elements. It features a built-in

rechargeable battery, 4 power outputs (e.g. for motors) and a wireless connection using Bluetooth

Low Energy (BLE, Bluetooth Smart).

This document describes the communication protocol with the BuWizz device in bootloader and

application mode. The document provides information on Bluetooth BLE specific device structure,

interfaces and packet exchange protocol.

BLE is a wireless communication standard, introduced in Bluetooth 4. It is intended for low-power

accessory devices, has lower transfer speeds and lower overhead than classic Bluetooth technology.

It features a unique software model, introducing GATT (Generic Attribute Profile) as the primary

communication mean.

BLE devices operate either as central (running GATT client) or device (running GATT server) and

exchange data via reading and writing to characteristics values, which are exposed via service and

characteristic descriptors.

Notable operations are (supported operations are shown in bold):

- advertisement: the device advertises special message so that the central can scan and find

active devices

- services list discovery (central can discover the list of services, supported by the device)

- write data to the device with or without device acknowledge

- read (poll) the data from the device

- notifications: device notifies the central with the new data (without acknowledging)

- indications: device indicates to the central with the new data (same as notify, but uses

acknowledgement)

Note

BLE supports pairing, but is not required. This allows the streamlined user experience, where the

application (iOS or Android) can scan for devices and connect to one it finds (without requesting the

user to pair the device in system settings first).

Version: 1.3

BuWizz 2.0 API

zz API

2

zz API

3

Operation modes

The device has two operation modes:

- Bootloader mode: enables transferring of the new firmware

- Application mode: user application running to support BuWizz device functions

- Application sleep mode: the device is in low-power mode, no Bluetooth function is active,

motor power is disabled

By default, the device starts in application mode if memory contents verification succeeds. Otherwise

or if application requests it, the device starts in bootloader mode (bootloader has a timeout of 2

minutes - if no data is received for this amount of time, the device is automatically restarted).

zz API

4

BuWizz Bluetooth BLE interface
The BuWizz device is a standard Bluetooth BLE device and is configured to not use the pairing with

the central in order to speed up the connection process and allow multiple users to use the device

(one at a time).

Discovering BuWizz device

When active, BuWizz device advertises main advertisement data and optional scan response data

(shown in Figure 1). Main advertisement data contains device name (‘BuWizz’) and short
manufacturer information (sequence of 6 bytes - 05:4E:’B’:’o’:’o’:’t’ in bootloader and
05:4E:’B’:’W’:’x’:’y’ in the application, where x and y are replaced with firmware version). Scan

response data contains the 128-bit UUID of the device’s main (BuWizz application) service.

The data in main advertisement packet and scan response packet can be used to identify the device.

If required, version bytes x and y can be used for other purposes (e.g. identifying a specific BuWizz

device by its serial number).

The advertisement interval is 100-250 ms to facilitate fast device discovery and connection.

Figure 1: Main advertisement data (left) and scan response data (right)

zz API

5

Connecting to BuWizz device

The device uses standard Bluetooth BLE mechanisms for establishing a connection.

Data exchange with BuWizz device

Commands and data are exchanged with the BuWizz device with the use of BuWizz application and

bootloader services, depending on the operating mode of the device. When writing to inactive

service, the device will discard the data.

The services have the following 128-bit UUIDs:

 Service UUID

Application 93:6E:67:B1:19:99:B3:88:81:44:FB:74:00:00:05:4E

Bootloader 0F:DC:A4:95:E6:CD:0E:90:BA:46:98:AC:C1:A4:05:4E

These services both have a data exchange characteristic with a data exchange descriptor and a Client

Characteristic Configuration Descriptor (CCCD) controlling the characteristic behavior.

 Data descriptor UUID Data descriptor handle CCCD handle

Application 0x92D1 0x03 0x05

Bootloader 0x0001 0x09 0x09

Data is sent to BuWizz device by writing to the data descriptor of the target service, while

notifications are used to receive data from the BuWizz device. A value of 1 must be written to CCCD

descriptor to enable the notifications. Packet size that is sent to device or received from the device

can be between 1 and 183 bytes long. No error checking is included at the packet level (data integrity

is guaranteed by the lower levels of the BLE protocol).

The device supports MTU size exchange to increase the MTU size in bootloader mode for improved

transfer speed.

zz API

6

Figure 2: BuWizz device services and characteristics

Complete set of services of BuWizz device is shown in Figure 2. Device information service is included

due to the requirements of the iOS devices.

zz API

7

BuWizz API

Control data for the motors, device's status data and OTA (Over-The-Air) data need to be transferred

via the BLE wireless link. This chapter defines the protocol that is used to construct the packets.

Application commands

The following list of commands is supported by the BuWizz device in the application mode with an

active BLE connection.

Device status report

Once enabled by writing 1 to data CCCD, the BuWizz device will periodically send device status report

with the approximate frequency of 25 Hz.

Byte Function / value

0 (command) 0x00

1 Status flags - bit mapped to the following functions:

Bit Function

7 unused

6 USB connection status (1 - cable connected)

5 Battery charging status (1 - battery is charging, 0 - battery is full or not

charging)

3-4 Battery level status (0 - empty, motors disabled; 1 - low; 2 - medium; 3 -

full)

2-1 unused

0 error (overcurrent, overtemperature…)

2 Battery voltage (3 V + value * 0,01 V) - range 3,00 V - 4,27 V

Example: 0x00 => 3,00 V, 0x7F => 4,27 V

3 Output (motor) voltage (4 V + value * 0,05 V) - range 4,00 V - 16,75 V

4-7 Motor currents, 8-bit value for each motor output (value * 0,033 A) - range 0 - 8,5 A

8 Current power level

Value Function

0 Power is disabled (default value after start or BLE disconnect)

1 Slow

2 Normal

3 Fast

4 LDCRS

9 Microcontroller temperature (value in °C)
10-11 Accelerometer x-axis value (left-aligned 12-bit signed value, 12 mg/digit)

12-13 Accelerometer y-axis value (left-aligned 12-bit signed value, 12 mg/digit)

14-15 Accelerometer z-axis value (left-aligned 12-bit signed value, 12 mg/digit)

zz API

8

0x10 Set motor data

Transfers motor data to the device.

Byte Function / value

0 (command) 0x10 - Set motor data

1-4 Motor data (signed 8-bit value for each motor output)

0x81 (-127): Full backwards

0x00 (0): Stop

0x7F (127): Full forwards

5 Brake flags - bit mapped to bits 3-0 (1 bit per each motor, bit 0 for first motor, bit 3

for the last)

If brake flag is set for a target motor, slow-decay control mode will be used

(shortcircuiting the motor armature over the inactive phase).

If flag is not set, the corresponding motor will be controlled in fast-decay control

method (coasting the motor during the inactive phase).

No response is generated

0x11 Set power level

Changes the power level.

Byte Function / value

0 (command) 0x11 - Set power level

1 Power level index

Value Function

0 Power is disabled (default value after start or BLE disconnect)

1 Slow

2 Normal

3 Fast

4 LDCRS

No response is sent.

0x20 Set current limits

Setups current limits for the motors. By default, the current limits are configured to default value of

750 mA on every BLE connection start.

If the motor current is above the current limit, the PWM duty cycle of the affected motor is reduced

until the current falls below the limit. PWM duty cycle will increase if the motor load is reduced.

Byte Function / value

0 (command) 0x20 - Set current limit data

1-4 Current limit in steps of 33 mA

No response is generated

